RSS

Схемы

схемы радиолюбительских устройств для начинающих

Ночник на светодиодах, т.е. его схема, представлен на рисунке ниже:

ночник на светодиодах

В схеме на рисунке 1 применены сверхяркие белые светодиоды (HL1 ÷ HL4), используемые в ручных фонарях, светильниках и лампах. Каждый светодиод светится при напряжении около 3,6 вольта. Так для четырёх светодиодов, включённых последовательно, необходимо напряжение порядка 14,4 вольта.

Требуемое напряжение питания ночника на светодиодах обеспечивает стабилитрон VD5, питаемый от бестранформаторного выпрямителя, состоящего из гасящих элементов C1, R1, R2 и выпрямительного моста на диодах VD1 ÷ VD4. Включение ночника осуществляется при помощи фоторезистора RK1, управляющего ключом на транзисторе VT1.

При обычном дневном освещении фоторезистор RK1 имеет низкое сопротивление, порядка 100 ÷ 200* Ом, что надежно удерживает транзистор VT1в закрытом состоянии. При наступлении сумерек его сопротивление увеличивается, а смещение на базе транзистора начинает повышаться, пока не подойдет к порогу открывания транзистора. При достижении порога открывания, транзистора открывается и включает светодиоды HL1 ÷ HL4. При наступлении светлого времени суток, сопротивление фоторезистора уменьшается, а светодиоды гаснут. Настройка порога включения ночника на светодиодах производится резистором R3.

В схеме ночника на светодиодах (Рис. 1) применены следующие детали: конденсатор С1 – любой на напряжение не менее 400 вольт, диоды VD1 ÷ VD4 на напряжение не менее 400 вольт и на ток больше 400 мА, транзистор VT1 типа КТ503Г или ему подобный, стабилитрон VD5 на напряжение 16 ÷ 18 вольт или составленный из двух на нужное напряжение, конденсатор С2 на напряжение 50 вольт.

Ночник на светодиодах конструктивно может иметь любой подходящий полупрозрачный (матовый) корпус. Важно, чтобы фоторезистор имел прозрачный защитный глазок (лучше с линзой) на корпусе конструкции.

Если нет фоторезистора, то схему можно упростить, а включение ночника на светодиодах производить при необходимости переключателем, как показано на схеме ниже (Рис.2):

ночник на светодиодах

Схема выпрямителя такая же, как и в предыдущей схеме на рисунке 1. Необходимость установки стабилитрона в схеме на рисунке 2 отпадает, так как светодиоды в известном смысле сами являются стабилизаторами.

Сетевое зарядное устройство для мобильного телефона в простейшем случае выполняется по схеме однотактного импульсного высокочастотного преобразователя, что позволяет значительно уменьшить габариты источника, к тому же он имеет высокий КПД.

Типовая схема зарядного устройства для мобильного телефона представлена на рисунке 1:

зарядное устройство

На транзисторе VT1 собран автогенератор, частота которого зависит от ёмкости С4. Запуск автогенератора осуществляется с помощью элементов VD6, VD7 и C3, при этом важно соблюсти полярность подключения выводов обмоток I и III трансформатора.

У разных производителей зарядных устройств мобильных телефонов могут быть некоторые отличия от типовой схемы. Например: диодный мостик VD1 – VD4 заменяют одним диодом, как показано на рисунке 2:

зарядное устройство

Кроме того, на выходе выпрямителя может быть установлен стабилизатор напряжения на транзисторе VT2.

В схеме преобразователя, для улучшения ключевых характеристик высоковольтного транзистора, дополнительно устанавливают транзистор VT2, как показано на рисунке 3:

зарядное устройство

Встречаются схемы зарядных устройств для мобильного телефона с индикацией окончания заряда, пример такой показан на рисунке 4:

зарядное устройство

Подборка схем зарядных устройств мобильного телефона в формате PDF скачать здесь…

Простые звуковые колонки для компьютера можно собрать на микросхеме TDA2822.

Схема таких колонок представлена на рисунке 1:

звуковая колонка

Усилители звуковых колонок выполнены по типовой для TDA2822 схеме. Дополнительно в схему добавлено сетевое питающее устройство, состоящее из трансформатора и выпрямителя. Первичная обмотка трансформатора включена через выключатель питания и предохранитель.

Вся основная схема смонтирована в одной из колонок, туда же установлены выключатель питания и сдвоенный регулятор громкости (R3,R4). Вторая колонка соединена с первой двухпроводным кабелем или шнуром. Провод, соединяющий вход колонок с выходом звуковой карты компьютера лучше применить экранированный, вилка стандартная стерео 3,5 мм.

Т.к. микросхема TDA2822 может обеспечить порядка 600 – 800 мВт на канал, то колонки не могут иметь большие габариты, и соответственно важно подобрать трансформатор небольшого размера, обеспечивающий напряжение после выпрямления (вывод 2 м/с DA1) порядка 7 - 9 вольт. При наличии подходящего по напряжению блока питания, его можно разместить вне корпуса колонки, а подключить его через разъём, или напрямую.

Динамики для колонок мощностью 1 – 3 Вт с сопротивлением 4 или 8 Ом. Сдвоенный регулятор громкости может быть применён с сопротивлением 10 – 22 кОм. Электролитические конденсаторы на напряжение не менее 16 вольт.

Сопротивления R1 и R2 подбираются следующим образом:

- подключают колонки к гнезду звуковой карты компьютера;

- включаем питание усилителя;

- запустить фонограмму на аудиоплеере компьютера;

- при максимальной громкости усиления (движок регулятора в верхнем по схеме положении) подбирают сопротивления по каждому каналу при максимально неискажённом сигнале, т.е. на пиках громкости не должно быть хрипов, а корпус микросхемы при длительном прослушивании не греется.

Более простые по схемотехнике звуковые колонки на микросхеме TDA2822, например для ноутбука, можно собрать по схеме на рисунке 2:

звуковая колонка

Питание звуковых колонок осуществляется от USB-порта компьютера (ноутбука). Из схемы исключён регулятор громкости и некоторые корректирующие цепи. Настройка производится аналогично, а усиление регулируется на панели регулятора громкости компьютера.

Регулятор громкости, баланса и тембра на специализированной микросхеме TDA1524A представлен на Рис.1.

регулятор громкости и тембра

Микросхема TDA1524A представляет собой двухканальный (стереофонический) регулятор громкости, баланса и тембра низких и высоких частот.

Темброблок, собранный по типовой схеме, имеет частотную компенсацию (loudnes), выравнивающий низкие частоты при малом уровне громкости звука. Включение частотной компенсации производится кнопкой S1. Чтобы постоянно использовать частотную компенсацию без возможности отключения, необходимо исключить из схемы элементы S1 и R11.

Технические параметры двухканальнного регулятора громкости, баланса и тембра на микросхеме TDA1524A представлены в таблице 1:

регулятор громкости и тембра

Рисунок печатной платы, размером 100х50 мм представлен на рисунке 2:

регулятор громкости и тембра

Расположение деталей регулятора громкости и тембра на монтажной плате изображено на рисунке 3:

регулятор громкости и тембра

Даташит микросхемы TDA1524A можно скачать здесь…

Прибор измерительный стрелочный, китайского производства, типа SUNWA (SAMWA) модели YX1000A, предназначен для измерения основных параметров электрических цепей (напряжение, сопротивление и ток). Различие между приборами SUNWA и SAMWA модели YX1000A только в количестве пределов измерений, а так же их некоторых значений.

Схема стрелочного прибора (мультитестера) SUNWA модели YX-1000A приведена на рисунке ниже:

мультитестер SUNWA YX1000A

Мультитестер SUNWA модели YX-1000A имеет 7 пределов для измерения постоянных напряжений и токов, 4 предела для измерения переменных напряжений, и 3 предела для измерения сопротивления. Шкала прибора 3-х цветная. Прибор имеет малые габариты и вес, и может быть применен как дома, так и на даче, и др. Погрешность измерения на разных пределах может достигать до 10% и выше.

Для питания прибора в режимах измерения сопротивлений применяется батарейка типа АА с напряжением 1,5 вольта.

Читать далее...